Module 8: practical writing strategies

Gershom (Jan) Martin Academic year 2014-5

Types of conference lectures

- (1) "Talklets" (5-10 min. "minipresentations")
- (2) Typical oral presentations (20±5 min)
- (3) Long-form talks (about 40-45 min.)

Some general recommendations

- 1 min./slide = good rule of thumb, but no "law written in stone"
- "Presenter tools": allows preparing notes beforehand and seeing them on your laptop screen (while audience only sees slides)
- text and background colors should be complementary if at all possible (life saver when you have a lousy projector)
- sans-serif or "humanist" types preferred
 - may change as true-HD projectors will become common
- Font sizes: 24pt. and up recommended (smaller only for footnotes)
- Animations, slide transitions: avoid "dancing bears" (Samuel Johnson)
- presentations involving multimedia: save yourself "cannot find file" embarrassments. Insist on presenting from the same computer as the talk was prepared on (to avoid "missing file") issues. If impossible, do a "dry run" before the session or during a break to ensure everything got transferred correctly

Talklets

- Very common in some disciplines, less so in ours
- You have only 5-10 minutes, so be very brief and to the point
- Gershom's unpaid advice:
 - #1: put complete author list and acknowledgments on the title slide (you won't have time otherwise)
 - #2: put summary and conclusions on the next slide (so even if nothing else gets said or heard, that is out there)
 - 3rd and later slide: explanation (sacrificial)
 - Presenting a poster to a professor who asks: basically the same idea as a talk let

Ordinary conference talks

- Most common
- Range from 15-25. Typically 20 minutes. Convention is that you leave 5 min. for discussion (Q&A). In practice often unrealistic.
- Typically on a single study (or 2-3 closely related ones that can be woven into a single story)
- Some level of detail possible
- Many conferences will only accept talks from professors (or sometimes postdocs), but some (notably ACS meetings) actively encourage students
- Invited lectures typically longer than contributed ones

Group and departmental seminars

- Typically 1 hour including Q&A, 45-50 min. exclusive of Q&A
- Group seminars: generally focus on a single topic in great detail
 - probably the easiest to prepare and "script"/"time"
 - fairly tolerant of language in the "informal register"
- Dept. seminars: often multiple subjects
 - like extended conference talks, but longer
 - Ph.D. thesis presentation: allow 15 min. or so for theoretical background
 - at conference talk, in-depth review of theoretical background generally inappropriate
 - In general: neither "talk down" nor "talk up" to your audience. Apropos: "Dogs look up to you, cats look down on you. Give me a pig! He looks you in the eye and treats you as an equal." (Winston Churchill)

Extended conference talks

- Typically 40 min.
- Nowadays, almost universally cover several topics
 - several small projects unified by one overarching topic
 - special case: Ph.D. thesis presentation
 - several new projects in a research group
- My usual "modus operandi" [lit.: "way of working"]:
 - Organize lecture as a group of short talks
 - Start off the presentation with an outline slide
 - Keep 1-2 "sacrificial subjects" in case one has time left for some reason.

Workshop & "Summer[/Winter] School" presentations

- Meant to be more didactic and "how-to"
- More detail allowed and appropriate
- Typically need to focus not just on one's own research

"Timing"/"Pacing" talks

- Highly recommended, especially if you have only a short time slot.
- In the humanities and social sciences, considered acceptable to just write out a speech in longhand and read it off the page
 - In the sciences, uncommon and frowned upon. Do this only as a last resort, e.g., in order to overcome crippling stage fright
- Give a few "practice talks" to an empty room, the mirror,... and time them
 - If nothing else, will give you a good idea about timing, and which parts need condensing/expanding
 - I sometimes write 1st drafts of my own talks by lecturing to an empty room or voice recording app, then drawing up outline and preparing slides based on that

Coping with stage fright

- Generally with Israeli students, opposite problem (overconfidence), but...
- One's first talk at a major conference can be intimidating
- Practice in front of others, perhaps arrange for the same talk to be "tried out" at a group of departmental seminar first
- Memorizing a scripted talk:
 - very helpful if you have an excellent verbal memory. Beware of memory lapses ("brain freezes") however: ensure to have cues on slides, notes,... for that event.
- "Notes" in Powerpoint (or Keynote): very helpful if you can be sure you will see your screen in "presenter mode" (rather than "video mirroring"). Perhaps print a "handout with notes" of the slides just in case
- In general, if you build slides in such a way that they make sense even if read independently of your narration, less risk of "losing one's place"
- Remember: you're not the only one who's ever had to cope with this
- Language issues: thorough mastery of English is anyway a "must" in today's professional world. Recorded scientific talks on YouTube, scientific audiobooks: very helpful if by native speakers

Is there "one correct way" to construct/write a paper?

- Short answer: no
 - Each specialty has its own conventions
 - Each journal/publisher has its own "house style", albeit not always "written in stone" in all respects
 - If you found a certain approach that works for you, why not stick with it?
 - If you switch fields, you may need to (un)learn habits
- Non-negotiable in all cases:
 - Good, sound science
 - Logical presentation
 - Good English, mostly in the "formal register"

Basic ingredients

- Always there in one form or another:
 - Introduction
 - Materials and Methods/Experimental Methods/Computational Methods
 - Should contain enough detail that anybody who wants to reproduce your work can do so
 - In "Letters/Communications", may be mostly or entirely relegated to Electronic Supporting Information (ESI)
 - Results and Discussion (sometimes two separate sections)
 - Conclusions

Deviations from typical structure (1)

- Comments on another paper:
 - Generally either criticism (stay polite!) or pointing out implications not discussed in the original paper
 - Ties in closely to the paper being commented on
 - "Fisking" (line-by-line quotation with refutation) common on blogs, not accepted in scientific journals
- Review papers: two major types, which I shall name by their most representative journals:
 - "Accounts of Chemical Research": fairly short (8-10 journal pages), topical, focused on the work in one's own group
 - Almost always by invitation only
 - "Chemical Reviews": long to very long, expected to cover all relevant literature exhaustively and objectively
 - Usually by invitation only, but a proposal and outline can be submitted to a journal editor, who may issue an invitation in response

Deviations from typical structure (2)

- Methodology papers: generally follow this patters
 - Introduction
 - Derivation of the method
 - Presentation of a practical protocol ["recipe"]
 - Validation
 - Performance for some relevant practical problems
 - Don't "shoot fish in a barrel"
 - Conclusions
 - A word of advice: don't claim your method is a panacea, state reservations and limitations honestly
 - Appendices:
 - Used for material required to "get the job done" (e.g., proof of some needed mathematical theorem or lemma) but that would break up the flow of the paper too much
 - Too little for separate paper
 - Too good to just "bury" in Electronic Supporting Information

How not to start writing

- Start at the beginning and move on straight to the end
 - When I've successfully done this, I was actually "cheating" since I had basically written the thing in my head before sitting down at the computer
 - Otherwise, a recipe for "writer's block"
 - One scenario where this may be practical after all: reworking a talk into a paper
 - since you (should) have a coherent outline already

A good place to start

- Prepare all your tables and graphs
- Study them carefully.
- Every observation you can think of: write down in sketchy form, either on 3x5 index cards or in a word processor with an outline mode (a separate screen may be helpful: I use Evernote on a 2nd computer, have used my phone in the past)
 - alternatively, print the graphs out and annotate the printouts
- After the first pass, rearrange the cards in a logical order. Then type up in outline ("bullet point") form
 - If already in outliner, you can obviously skip typing
 - you may get ideas to check things
- Make a second pass
 - any additional experiments/calculations required or desirable?
 - if yes, feasible with available resources in realistic time?
- Iterate until convergence
- You now have the skeleton of "Results and Discussion". Now "translate" your bullets into good Englush
 prose

Introduction: ingredients

- Some general context of the problem (don't become overly general)
- Specify the problem
- What has been found in previous studies
 - Exhaustive review possible if new and narrow topic
 - Often neither possible nor desirable. Generally, make sure to cite:
 - First paper to address the problem
 - Any good recent review article(s)
 - Papers with key findings directly relevant to the present paper
- What questions remain unanswered
- Goals of the present study
- Often (especially for long papers), a statement of the key findings that will be presented. ("In the following, we will show that...")

Detective stories?

- Most of your instructor's early papers are basically in "detective story" form
- However, that is usually not the optimum way to proceed
 - Generally more suitable for short to medium-length papers, focused on a very narrowly defined problem (e.g., the hunt for some elusive molecule in interstellar space)

Abstract

- Should be short (100–300 words)
- State all the key findings concisely
- Anything that people are likely to use as search keywords (acronyms or synonyms)
- In general, the aim is to
 - make people search in SciFinder, Web of Science, PubMed,... notice your paper
 - get them interested enough that they will also read it!
 - [Soviet-era joke:] "Comrade, the KGB has developed a technique for talking to dead people!" "Yes, but will they listen?"
- Write at the beginning or at the end?
 - If the paper is based on a talk given earlier, you generally already have an abstract
 - Otherwise, I generally write mine at the end

Conclusions section

- Restate salient conclusions of paper
 - some people just quote their abstract verbatim as conclusions (or vice versa)
 - some journals let you get away with stating conclusions in bullet-point form (a personal quirk of mine)
- A statement of reservations may be appropriate in some (self-evident) cases. ("It should be noted that our method is not intended for use on/will break down for/...")
- Often, a statement of perspectives/prospects for future research/"quo vadis" ["whither next?"] may be appropriate
 - such a statement typically does not belong in an abstract

Acknowledgments

- Usually brief section (1-2 paragraphs) at the very end of the paper
- Mandatory: include all granting agencies that funded the research
 - include grant number, if available
 - generally required for grant progress reports to the granting agency
 - Example: "This research was (partially) funded by Israel Science Foundation grant 709/05 and by the Helen and Martin Kimmel Center for Molecular Design."
- Essentially mandatory: acknowledge any fellowships you received (especially those requiring progress reports)
- Scientific courtesy:
 - acknowledge any results communicated prior to publication that had a significant impact on the paper
 - any helpful discussions with non-coauthors/comments on preprints/... that were instrumental in shaping the final paper
 - particularly helpful referee comments: your instructor acknowledges whenever he can, but some editors object to "thanking people for doing what should be their job"
- Personal acknowledgments and dedications:
 - parents, amorous partners, friends: "es passt nisht" (Yiddish: "simply not done") in scientific papers. OK in thesis.
 - festschrift (issue in honor of senior scholar) or memorial issue: many journals have policies that no reference must be made to this being a special issue (to ensure the paper is reviewed like any others). One can do this obliquely by inserting into the introduction a few references to the work of the person being honored/remembered

Electronic Supporting Information (ESI) and "rich content"

- Not all papers require ESI
- When needed, absolute minimum is: all information needed to repeat the experiment/calculations
- Increasingly, journals can handle "rich content" as part of ESI
 - movies of animations
 - Cartesian coordinate files of molecular structures, displayed as manipulable "ball and stick" structures
 - ensure no platform-specific or for-pay plugins required
 - Source code of computer programs
 - Sample inputs and outputs
 - I often include spreadsheets with raw data, for people to manipulate themselves
 - Etc....

Free-form discussion